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Abstract. We present a review of some recently developed techniques in the field of natural
language processing. This area has witnessed a confluence of approaches which are inspired
by theories from linguistics and those which are inspired by theories from information theory:
statistical language models are becoming more linguistically sophisticated and the models of
language used by linguists are incorporating stochastic techniques to help resolve ambiguities.
We include a discussion about the underlying similarities between some of these systems and
mention two approaches to the evaluation of statistical language processing systems.
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1. Introduction

Within the last decade, a great deal of attention has been paid to techniques for
processing large natural language copora. The purpose of much of this activity
has been to refine computational models of language so that the performance
of various technical applications can be improved (e.g. speech recognisers
(Jelinek 1985), speech synthesisers (Church 1988), optical character recog-
nisers (Hull 1992), lexicographical support tools (Church et al. 1991), auto-
matic translation systems (Brown et al. 1990) and information retrieval and
document analysis systems (Church et al. 1991)); another significant interest
is shown by cognitive scientists who build explicit computational models of
the human language processing ability (Kill 1973; Chater 1994). These two
sets of interests are not necessarily mutually exclusive.

Already, several sub-domains have crystallised out of the current surge
of interest: automatic word classification, automatic part-of-speech tagging,
segmentation of streams of linguistic units (at the sentence, phoneme,
morpheme and word level), language models for recognition (in this substan-
tial research domain, mostly untouched by cognitive scientific concerns, the
phrase ‘language model’ has become synonymous with the linguistically
discredited ‘finitary model’ which, with the addition of stochastic transition
arcs, is also known as a ‘Markov model’), grammar induction and machine
translation. We shall examine some of the work which has been carried out in
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these areas and also situate the efforts within the broader context of models
of natural language.

We shall also be looking at the inventory of tools and techniques which
researchers have been applying to the various areas of language processing:
these include the measures entropy, perplexity and mutual information, and
techniques borrowed from traditional statistics, connectionism, genetic algo-
rithms, formal language theory, Markov modelling and non-linear dynamical
modelling. Much of this discussion assumes some background knowledge of
statistics and probability theory; section 2.8 summarises and makes connec-
tions between statistical and non-statistical models of language. After this, we
suggest that there are interesting mathematical connections between many of
these techniques. We finish by discussing two ways of evaluating language
modelling systems: engineering evaluations and cognitive scientific evalua-
tions.

2. Corpus processing specialisms

In this section we describe some examples of recent work within each of
the new language processing specialisms. We present this selection as being
representative of the main approaches, rather than offering an exhaustive
catalogue. Whilst we believe that this approach is more than merely expos-
itory, it is clear that there are many areas of overlap both in terms of the
work which particular researchers undertake and in terms of mathematical
underpinnings of the specialisms. Section 3 explores these connections in
more detail and we shall now offer some general remarks on computational
models of language.

Two traditionally important concepts in linguistics are syntagmatic and
paradigmatic relations (de Saussure 1983). The former defines ways of
combining linguistic units and the latter defines similarities between linguis-
tic units, though these relations are interdependent. Of our specialisms, we
associate word classification with the paradigmatic relation; segmentation, on
the other hand, is more immediately associated with the syntagmatic relation.
However, we shall see that word classification makes little sense without
syntagmatic considerations; a similar inter-connection holds in the process
of segmentation. Within the field of language modelling for recognition, the
syntagmatic relation has dominated early research, which was based upon
n-gram distributions of words. More recently, class-basedn-gram language
models have improved language model performance precisely by incorporat-
ing paradigmatic information (Brown et al. 1992). The specialism of grammar
induction, however, must derive both relations simultaneously – this task is
sometimes called the bootstrapping problem (Powers & Daelemans 1992).
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The theme of the present work is to indicate the many ways that syntagum
and paradigm can reduce uncertainty.

The interdependence of syntagmatic and paradigmatic relations in the
structure of natural language is recognised by corpus processing researchers
(Solomon & McGee-Wood 1993; Finch & Chater 1994) – it is this inter-
dependencewhich leads critics to discount the possibility of automatic natural
language learning: for example, in order to construct a system which gener-
ates a hierarchical structure from plain sentences one first needs to know to
which categories individual words belong; but to know this, one must have
some idea of the positions these words typically occupy in a grammar.

Many of the researchers discussed in this review support the modern struc-
tural linguistic approach, which suggests that a significant amount of the
structure of natural language can be detected by distributional and statistical
means; Tanenhaus (1988) summarises the search by early structural linguists
for discovery procedures, which when applied mechanically to a corpus
of utterances could, in principle, extract the linguistically relevant units.
Liberman (1991) notes the growing interest of the academic community in
automatic approaches; this can be read as an indirect barometer of the success
of these systems. Church and Mercer (1993) argue that many of the tech-
niques described herein are out-performing more traditional knowledge-based
methods. The case for automatic modelling of linguistic phenomena over
manual modelling is made convincingly in Makhoul et al. (1990), which also
discusses some of the practical requirements and problems associated with
automatic linguistic modelling. Zernik (1991) discusses many of the major
limitations of current automatic language processing systems. He presents a
cogent argument in favour of systems which need minimal human interven-
tion and which process raw materials which are easy to construct.

Sampson (1987) and Brill and Marcus (1992) both present a strong case in
favour of distributional analysis. Church (1988) also finds surface statistics
worth investigating; others chose to make no direct challenge to linguistic
orthodoxy while using methods which undermine tenets of theoretical linguis-
tics (Carroll and Charniak (1992), for example consider phrases ‘good’ if they
occur frequently, regardless of what linguists think; also, Magerman (1994)
declares in the preface of his thesis that a significant goal of his work was to
replace linguistics with statistical analysis of corpora).

Investigating the amount of linguistic structure in language utterances is an
interesting theoretical research topic in itself, though it also commands prac-
tical advantages over a reliance on manually constructed corpora. First and
most obviously, running an algorithm on raw text (for example, to generate
word classes) is time and resource efficient – manually tagged corpora
are expensive to make, largely because the humans who make the word
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class judgements do so slowly. Secondly, manual tagging is not a language-
independent process whereas the same automatic word classification system
could be applied to any language – even one whose syntax and possibly
semantics are unknown to investigators. Finally, in some cases, automatic
word classification may be the only method available to the researcher. Similar
advantages apply to automatic part-of-speech tagging, automatic segmenting
and parsing, and grammar induction.

Church and Hanks (1989) have recently introduced the psycholinguistic
term word associationinto the vocabulary of computational linguistics. In
psycholinguistics the term refers to the usually semantic priming which occurs
between pairs of words. Tests can be performed which measure the lexical
retrieval speed for a word likehdoctor i; these tests can be repeated when
the subject has been primed by being shown the wordhnurse i, for example.
Those primer words which lower retrieval time are said to have a high word
association index. Also, syntactically close words can act as primers – for
example, the effect can be observed between certain verbs and prepositions.
These association indices are estimated through psycholinguistic experiments
with many subjects (for example, see Miller and Charles (1991)).

The insight that semantic and syntactic relations could be induced from
the linear structure of natural language utterances has long been a key tenet
of structural linguistics (Harris 1951; Tanenhaus 1988), crystallised by Firth
(1968) as follows: “You shall know a word by the company it keeps.” Using
information theory, the Firthian slogan can be re-cast: “The structural descrip-
tion of a lexical item is some function of its context”. In other words, accurate
models of word context can lead to low entropy word prediction systems.

Only recently have computational resources of sufficient power and corpora
of sufficient size been made available to the research community (Church and
Mercer 1993; Liberman 1991) to allow them to perform some of the many
experiments indicated by a structuralist perspective.

Word associations can be extracted from corpora by borrowing the infor-
mation theoretic measure ofmutual information(Jelinek 1985; Cover and
Thomas 1991); ifP (x) andP (y) are the independent probabilities of events
x andy, then the mutual information,M(x; y) is

M(x; y) = log
P (x; y)

P (x)P (y)
(1)

This measure compares how likelyx andy are to occur together – in the case
of words, this means serial occurrence, so thatM(x; y) is not necessarily
the same asM(y; x) – with their independent likelihoods of occurrence. The
higher the likelihood of the co-occurrence of eventsx andy, the larger the
mutual information value. Church and Hanks describe some initial analyses of
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corpora using mutual information. Most of their results are close examinations
of particular word relations and syntactic constructions.

2.1. Word classification

We start our inventory of corpus based specialisms with word classification.
We note first that in psycholinguistics, both Chomskyan and distributional
approaches need to postulate a system of lexical acquisition and categorisa-
tion; in the Chomskyan model, innate (universal) language structures alone do
not provide sufficient information about nouns or verbs or about individual
lexical items; distributionalists too need to explain by which mechanisms
children discover word taxonomies. This situation allows researchers work-
ing on automatic word classification to remain neutral about full language
acquisition. Of course, corpus processing researchers may be uninterested in
any cognitive scientific implications of their models.

Explicit information theoretic approaches to automatic word classification
are common: Brown et al. (1992), Pereira and Tishby (1992) and Ney et
al. (1994) have used various measures taken from information theory as
the bases of their systems. Connectionist networks are also well attested:
Kiss (1973), Elman (1990) and Finch and Chater (1994) present interesting
systems, couched mainly in a cognitive scientific perspective. Finch and
Chater (1992) also investigate a word classification system based on a more
traditional statistic – Spearman’s rank sum correlation coefficient. Several
other researchers have also resorted to standard statistical measures; these
include Scḧutze (1993) and Hughes and Atwell (1994). Brill et al. (1990)
designed a word classification measure based explicitly on early structural
linguistic theory.

The system described in Brown et al. makes use of the mutual information
between contiguous word-class pairs and works by a process of local optimi-
sation. The mutual information between two random variables,X andY is
just the expectation of equation 1

M(X;Y ) =
X
x;y

P (x; y) log
P (x; y)

P (x)P (y)
(2)

wherex andy are discrete values of the random variables,X andY respec-
tively andP (x) is the probability of eventx. When the events are occurrences
of word classes, equation 2 measures how much more likely it is to observe
the two classes in text than their independent unigram probabilities suggest. A
score of 0 indicates that the observed class eventhxy i is no more common than
the independent probabilitiesP (x) andP (y) suggest. A large positive score
indicates that the eventhxy i is much more likely than the independent uni-
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gram probabilities suggest; and conversely for negative mutual information
values. Brown embeds this metric in a bottom-up agglomerative algorithm
the results of which can be used to produce a classification of the vocabulary.
The resulting taxonomy can be incorporated into an interpolated language
model and successfully lowers the test set perplexity of such models.

The task of finding that series of class merges which maximises the class
average mutual information has not been solved, though the technique of
locally maximising average class mutual information does lead to very inter-
esting results. Brown’s algorithm discovered, among others, the classes:

‘mother wife father son husband brother daughter
sister boss uncle’

‘had hadn’t hath would’ve could’ve should’ve must’ve
might’ve’

‘head body hands eyes voice arm seat eye hair mouth’

Pereira and Tishby use the Kullback-Leibler distance (also known as relative
entropy),D(P jjQ) to measure the distributional dissimilarities between word
distributionsP and hypothesised cluster centriodsQ.

D(P jjQ) =
X
x

P (x) log
P (x)

Q(x)
(3)

The measure offers an indication of how much information loss would be
incurred by using the distributionQ – based on a summarising distribution of
many words – instead of the correct distributionP . They embed their measure
in an algorithm based on temperature annealing: as the temperature constant is
lowered, dissimilarities between the distributions become more important and
the optimal number of cluster centriods increases. Non-hierarchical groups
can be extracted from this process and intuitively appealing syntactic clusters
are observed, including, for example, the group:

‘quickly apart slowly rapidly quietly shortly sharply
steadily remote exclusively softly sadly varies
eagerly ...’

Kneser and Ney (1993) use a maximum likelihood criterion (see section 2.4)
to drive their word clustering, which they embed in an iterative optimisation
algorithm. They postulate a mapping between wordsw and one ofM word
clusters:w ! g(w), whereg(w) is the class of wordw. They then use a
training set to classify words in order to make the bigram class language
model

P (wn

1 ) =
nY
i=1

P (g(wi)jg(wi�1))P (wijg(wi)) (4)
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maximally likely (the product is over alln words,wi in the training setwn

1 ).
In practice, they minimise the negative logarithm of this probability – called
the estimated log-probability, LP.

Elman introduces the recurrent neural network, in which input to the hidden
layer of neurons is augmented with a copy of the states of the hidden neurons
at the previous time interval. This allows some serial structure to be encoded
in the network. After training the net to predict the next word in an unbroken
sequence of sentences, Elman performs a cluster analysis of the hidden unit
activation levels, from which he can generate a word taxonomy. This system
discovers some interesting syntactic and semantic structure in an artificially
generated simple grammar. His important insight was to recognise that after
a network has been trained to predict words in a continuous stream from
sentences generated by a simple grammar, the network’s hidden nodes must
be representing, in a distributed way, the syntactic-semantic distinctions of
that language. Two aspects of this system make it difficult to use directly in
statistical language modelling – first, the classes are not explicitly available
and second, the quality of results when scaled up to real language data has
been challenged (Redington et al. 1993).

Scḧutze takes the 5,000 most frequent words from a large corpus and
generates a sparse matrix containing their bigram frequencies. This matrix
is passed to a sparse matrix algorithm which implements a singular value
decomposition, producing a real-valued vector for each word and preserving
similarities between words.

An interesting statistical model is that of Finch and Chater (1992). They use
a statistical measure to extract syntactic and some semantic categories. They
derive their similarity metric from a consideration of the ‘replacement test’ of
theoretical linguistics, which suggests that lexical items which are distributed
similarly should receive similar linguistic categorisations. IfhC;wi is a well-
formed sentence in a language, whereC is the set of all contexts andw
is a particular lexical item, thenw andw0 are said to belong to the same
class ifhC;w0i is also well-formed. Since the notion of well-formedness is
not simply incorporated into statistical natural language processing systems,
Finch and Chater define the context of an item to be the two words either
side of the word. They use the Spearman rank correlation coefficient; cluster
analysis then places words of similar distribution close to each other in
a dendrogram. Spearman’s coefficient is a non-parametric measure of the
association between two variablesx andy, when the distribution ofx or y
(or both) cannot reliably be assumed to be normal.

� = 1� 6
P

k

i=1 d
2
i

k3 � k
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wheredi is the difference between the rank of theith x value and the rank
if the ith y value and where thek values ofx andy have been arranged in
ascending order. Finch and Chater have also begun to apply some ideas from
self-organising neural networks (Kohonen’s work) to their own statistical
bigram model, with slightly less successful results. Once a set of word classes
has been induced, they argue, these classes can be used to induce grammatical
rules, which in turn can be used to improve the original classification.

Brill et al. (1990) report their attempts to discover the word classes of a
language. They use a distributional analysis based on word co-occurrences
to cluster classes of words. They describe the requirements for two words
to belong to the same word class in set-theoretic terms. Two words,x andy
belong to the same class if and only if wordy contains all of the features of
wordx and wordx contains all of the same features of wordy. The features
of x are operationally described in terms of the set of bigrams wherex is one
of the words.

One of the most prescient works on automatic word classification in the
1970’s was presented by Kiss (1973). He develops a psycholinguistically
informed computational model of lexical acquisition based on a hybrid
Markov model and a proto-connectionist model. He uses a variant of the
Canberra measure to describe the dissimilarity between a small sample of
words taken from a corpus of mother and child interractions. His classifica-
tion system also allows for the multimodal nature of words and parallels some
results found in child language acquisition research. He too uses traditional
statistical techniques to transform his implicit word classification representa-
tion into tree-like structures.

The variety of approaches in automatic word classification makes evalua-
tion and comparison of systems difficult. However, McMahon et al. (1996)
contains experimental evaluations for the systems of Elman, Finch, Hughes,
McMahon and Brown. We can make some general comments here about the
systems. The phenomenon of ambiguity in linguistics corresponds in part to a
common word classification problem of having to classify words which have
multimodal distributions. Many of the the classification systems mentioned
above are non-dynamic and they force words to occupy a single place in
the classification taxonomy. The systems of Kiss and Pereira, however, both
allow for this multimodal property of words by making the classification
of words probabilistic. However, Periera’s system, like Elman’s, Brill’s and
Kiss’s has so far only been able to classify small numbers of words. Schütze’s
system can handle vocabularies of magnitude 104. The systems of Brown,
McMahon, Finch and Hughes can handle vocabularies of magnitude 103,
though McMahon and Brown have also developed hybrid systems which
can process vocabularies of magnitude 104 and 105 respectively. Most of
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the systems require separate clustering to gain access to word classes, but
McMahon’s representation allows immediate access to word classes. This
feature offers practical benefits rather than cognitive plausibility. The systems
of Pereira and McMahon cluster in a top-down way, whereas the remaining
systems cluster words from the bottom up.

2.2. Part of speech tagging

In this section, we will describe some representative work in automatic part-
of-speech tagging. The techniques developed here can also be applied to
the problem of word sense disambiguation (Gale et al. 1992), provided that a
useful semantic tagging representation for words exists, and to morphological
disambiguation (Bouchaffra and Rouault 1992). In all of the work reported
below, very high tagging accuracy is reported, though we suggest that the
overall percentage accuracy is not the best way to measure part-of-speech
tagging systems. Zipf’s law (Zipf 1949) predicts that a small fraction of very
frequent lexical items accounts for a very high percentage of the tokens in
a corpus; in English, for example, the 1000 most frequent words account
for 85% of the tokens in a one million word corpus. Words likehthe i and
hai are almost always determiners and so even a contextless tagger should
score well. Perhaps a better measure of the quality of a tagger would be a
measure of how many complete sentences it tags with zero errors, one error,
etc.Elworthy (1994) suggests another measure, discussed later.

Church (1988) presents an automatic part-of-speech tagger which uses a
dynamic programming technique to maximise the probability

P (g(wi)jg(wi+1); g(wi+2))� P (g(wi)jwi)

whereg(wi) is the part-of-speech tag for wordwi. The second element in
the above expression estimates the prior likelihood that wordwi has as its
part of speechg(wi). The first element corresponds to a second order Markov
model for parts of speech. He reports 95% to 99% accuracy on a test set
when the model is trained on a tagged version of the Brown corpus. Brill and
Marcus (1992) also describe a system which tags words automatically, but
their system does not rely so heavily on pre-tagged corpora. They develop
a method of estimating the single most likely tag for a word type, with
some help from an informant, and use this to create a prototype word token
tagger which achieves 84% accuracy. They then use a small set of tagged
utterances as input to a system which learns some word-tag context sensitive
transformation rules. The combined system elicits 94% accuracy. Finally,
a morphological system tags infrequent words with accuracy 79.5%; since
22% of the word tokens are infrequent, they quote a final tagging accuracy of
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90.7% for their test corpus. The tag scheme used in this system is a reduced
version (7 word categories only) of the tagged Brown corpus.

Kupiec (1992) describes an automatic part-of-speech tagger based on
hidden Markov modelling principles. Like the systems of Brill et al. and
Church, the tags themselves are predetermined linguistic parts of speech.
Kupiec reports that the system achieves 96% accuracy. However, unlike the
other systems, which use tagged training corpora and hence can directly esti-
mate prior and context probabilities, Kupiec’s system is trained on untagged
corpora and uses the forward-backward algorithm to estimate parameters.
The two sets of parameters for a hidden Markov model are transition prob-
abilities and output probabilities; in part-of-speech applications, the former
correspond to likelihoods of tags at particular points given recently observed
context tags, and the latter correspond to likelihoods of particular words given
tags. In this system, words are mapped onto equivalence classes in order to
alleviate the sparse data problem – this means that, when the hidden Markov
model is trained and when it is used to tag new sentences, the first stage
involves transforming the words into a stream of equivalence class elements
(of which there are 202 in total). These elements correspond approximately to
contextless tags: for example,hinformation imight be mapped to ‘noun’,
htable i to ‘noun-or-verb’. Instead of using first or second order models
(bigram and trigram models respectively), Kupiec attempts to model higher
order context by adding information derived from a manual linguistic analysis
of the common errors of a simple first-order model. This addition improved
tagging accuracy by a fraction of one percent.

The importance of the word-to-equivalence class mapping – functioning as
a prior word classification approximation – is addressed by Elworthy (1994).
Brill and Marcus (1992) already note that a simple system which tags words in
a context independent way, by selecting the most frequent tag for each word,
can achieve approximately 90% success. If the initial equivalence classifica-
tion is manually constructed to code for certain linguistic categories, then it
is unclear just how much benefit is derived from the non-automatic classifi-
cation; however, even if it turns out to be a significant factor we might prefer
Kupiec’s system because the manually constructed equivalence mapping is
still contextless and involves less effort than context-based tagging. Elworthy
also recognises that overall tag precentages can be misleading and suggests
that measuring the percentage of ambiguous words correctly tagged allows a
more useful evaluation. He shows also that training from a tagged corpus
always leads to better models than starting from equiprobable transition
and lexical probabilities. He concludes that, for Baum-Welch re-estimation
to be useful, some biasing, either in the transition probabilities, or in the
lexical probabilities, must be present in the system before performing the
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re-estimation. Furthermore, Elworthy identifies three types of re-estimation
schedule: classical, early and initial. The classical schedule leads to conver-
gence to an optimum over many iterations; initial scheduling displays a
gradual decrease in performance from an initially high state to a sub-optimal
convergence point; early scheduling peaks after a small number of iterations,
and continues to decline towards a sub-optimal convergence point.

A more traditional automatic part-of-speech tagger is reported by Hull
(1992); a tagged corpus provides direct estimation of tag transition probabili-
ties and lexical probabilities (also called prior probabilities or confusion prob-
abilities). Also, Brill (1994) has recently developed transformation tagging –
a rule-based automatic part-of-speech tagging system the rules of which can
be learned using an error-driven learning paradigm. He reports results which
are better than stochastic Markov models – 96.5% accuracy – and claims
further that his method is better because it can capture linguistic information
directly, though he offers no arguments to support the claim that explicitly
rule-based systems are better than stochastic systems. Certainly, the rule based
system is more informationally compact than an equivalent Markov system.
During training, the output from a approximate tagging system is compared
with the manually tagged equivalent and rules are induced which reduce the
error (difference).

2.3. Segmentation

Sentence structure can be described in terms of constituents. Grammar deter-
mines the rules of combination (syntagmatic rules) of these constituents. In
any segment of text, there are many ways of sub-dividing that text. From
a language processing perspective, the most interesting way is by divid-
ing it into the constituents of the grammar which is said to generate that
language. Constituents can be hierarchical – at one level, the text is divided
into sentences, at another, into sub-sentential constituents.

Syntactic analysis can be considered to consist in segmenting and interpret-
ing sentences. Of course, like many aspects of natural language processing
in humans, there is much feedback between these systems; however it may
still be useful to examine each process separately. The second process, inter-
pretation, involves making judgements (often linguistic) about the various
elements of a language stream; the previous section summarised some
attempts to analyse the language stream through automatic tagging. In this
section, we introduce some research in the area of automatic segmentation.
The aim of many of the researchers introduced in this and the previous section
is to advance components of an overall system which can parse language
streams: here, parsing is segmentation plus tagging, where tagging is applied
not only to words, but to higher level constituents. Segmentation itself can be
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flat or hierarchical: a flat segmentation takes a stream and identifies signif-
icant boundaries, whereas hierarchical segmentation produces a bracketing
which allows for the construction of a parse tree for some given linguistic
input stream. Often, similar techniques are applied to both types of segmen-
tation, although hierarchical segmentation is more difficult to achieve than
flat segmentation.

Fulk and Gustavson (1990) use a measure called the variety index. Variety
index minima correspond to constituent ends and hence can be used to
segment the linguistic stream. The index is calculated as the product of the
mean of the proper left and right bi-string ratios, which themselves are the
significant conditional maximum likelihood probabilities (see section 2.4)
when processing in a leftwards and a rightwards direction. That is, if the
letter-streamhthecatsatonthemat i is being processed and we are inter-
ested in the variety index of the sixth letter (theht i of ‘cat’), then left bi-string
ratios might includeP (hat ijhai), P (hcat ijhca i) andP (hecat ijheca i),
as long as non-zero values exist for then-gram probability estimates. Simi-
larly, some right bi-string ratios might includeP (hts ijhsi), P (htsa ijhsa i)
andP (htsat ijhsat i), with the same restrictions. Left and right bi-strings
are averaged to give a single pair of left and right bi-string values. The
product of these values gives us the variety index at the sixth position in the
input stream. In effect, the bi-string ratios estimate a very simple version of
a weighted average language model (O’Boyle et al. 1994). One advantage of
segmenting a given input is that left and right context can be exploited, where-
as language models destined for speech recognition tend to limit themselves
to left contexts only. Faulk and Gustavson use corpora which are produced
by modestly-sized finite state grammars but their results indicate a degree of
success.

Brill et al. (1990) and Church (1988) develop the use of mutual informa-
tion within computational linguistics in several interesting ways. They apply
the concepts to grammar induction and automatic hierarchical segmentation.
They use a corpus which has been annotated with parts of speech and develop
a constituent boundary segmenting algorithm which takes a sentence from
the Brown corpus, such as

He directed the cortege of autos to the dunes near
Santa Monica

and segments it as follows:

(He(directed((the cortege)(of autos)))((to(the
dunes))(near Santa Monica)))

The Brill et al. algorithm uses mutual informationminimato discover con-
stituent boundaries; the same insight has been applied in the work of Wolff,
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using a rule-based system (1991), by Elman (1990), using a connection-
ist architecture and, as we have just seen, by Faulk and Gustavson (1990),
extending Harris’ idea of avariety indexvalue being minimised at constituent
boundaries. It is also related to the idea of discovering useful schemata with
genetic algorithms (Goldberg 1989; Holland 1975). The same periodic rise
and fall in uncertainty is described using information theoretic terminology
by Shannon (1951). Also, Attneave (1954) describes a similar phenomenon
in a model of visual perception – information is highest along contours and
boundaries in a visual image, and highest of all when the rate of change of
the boundary is highest.

In Brill et al.’s formulation, word classn-grams derived from a tagged
corpus are examined in order to find likely constituent boundaries, ordisti-
tuents. Their hypothesis states that a form of mutual information called
generalised mutual informationwill be able to identify distituents. This can
be explained further by an example.

If the classn-gram ishdet noun verb i and we are looking for the most
likely constituent boundary – e.g. let us assume that the best partial segmen-
tation is ((det noun) verb) – then the probabilityP (hdet noun i)
should be significantly higher thanP (hdet noun verb i). Informally, this
captures the intuition that good constituents should occur in many contexts.
In terms of the task of predicting which class comes next, the entropy should
remain low, and possibly even get lower, until the constituent ends, at which
point the entropy for the next class should be significantly higher. These high
entropy break-points in effect mark off the structure of particular utterances.

This method leads to successful (unlabeled) parse tree estimations for a test
set of unconstrained free discourse; for sentences of length less than fifteen,
the parser averages two errors per sentence, rising to between five and six
errors for sentences between sixteen and thirty words long.

Recurrent connectionist architectures (Elman 1990; Jordan 1986) have
been applied to the task of discovering the structure of language from its
serial expression. In these cases, language samples are generated by simpli-
fied grammars and restricted vocabularies. Connectionist researchers also
recognise that high entropy break points represent useful ways to proceed
with the discovery of linguistic structure. Elman (1990) uses slightly different
terminology – he notices that time-varying error signals in recurrent nets can
provide clues to structure.

Reilly (1992a; 1992b) develops this work by training another neural net-
work to take as input the hidden layer activation state of a recurrent net and
to output a partial but explicit parse. Thus, in his system, just as in Brill
et al., algorithms exist which can automatically parse incoming streams of
words, using the structure which is implicit in language, but without having
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an explicit traditional linguistic component. Brown et al.’s class-basedn-
gram language model can also be described as a stochastic grammar which is
distributed in the frequency statistics.

Scholtes (1992) implements hisData Oriented Parsingsystem with a
Kohonen feature map. The system uses structural features together with statis-
tical information from a corpus. His parser produces a set of ranked parses
for an ambiguous sample sentence; it produces partial parses for incomplete
sentences, wrong sentences and new sentences which contain several totally
unseen words or structures.

Recently, Juola et al. (1994) have applied a similar technique to the dis-
covery of morpheme boundaries in words. They develop a system based on
the assumption that entropy rises at morpheme boundaries. They report 47%
accuracy when their system is trained on a 31,000 word corpus (2,500 distinct
words), compared to judgements of a native speaker of English. Also, Brent
(1993) offers a similar system, using the slightly different terminology of
minimal generative explanation, for discovering morphemes. He claims that
the idea can be extended to syntactic segmentation. In one experiment, based
on frequency statistics from the 8,000 most frequent words in a corpus, Brent
reports that 79% of the morphemes his system discovered corresponded to
attested morphemes.

Kozima (1993) extends the idea of language stream segmentation to higher
levels by using a semantic net (constructed from theLDOCE dictionary) to
provide data on the semantic cohesion between words and by estimating
the lexical cohesion profile of a text. By this method, text streams can be
segmented into coherent semantic ‘scenes’. This is a structuralist approach
to automatic text (proto-)understanding. Again, a similar rise-and-fall pattern
can be observed when moving from one coherent scene to another.

2.4. Language models for recognition

Statistical Language modelling for speech recognition applications has often
progressed using the least cognitively plausible models of language (Chomsky
1957; Ramsay 1994). However, it has led the way in terms of the develop-
ment of sophisticated probability estimates. Not only were statistical language
modellers the first to produce robust large vocabulary language model systems
by incorporating probabilities of linguistic events (in the first and simplest
case, linguistic events being equated with occurrences of certain words), but
they were among the first to identify the weaknesses in the models and to
suggest involved statistical and information theoretical advances on these
models. Nor have many statistical language modellers been blind to the lack
of cognitive plausibility of their models, such considerations being, in many
cases, peripheral. Despite this sometimes staunch engineering approach,
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recent statistical language modelling systems have shown signs of mov-
ing beyond the traditional finite-state word based grammars which underpin
much work in this area.

Broadly speaking (and mainly for the purpose of exposition), we can say
that there are three areas of investigation which statistical language modellers
are currently examining: word distribution modelling, word context model-
ling and language model integration. Research often overlaps all three areas.
Firstly, and perhaps most importantly, work has continued in advancing
improved probability models of rare events. Many word types occur very
infrequently or not at all in even the largest training corpus; also, when a
system needs to estimate word bigram, trigram and higher ordern-gram
probabilities, the problem of accurate probability estimation becomes even
more acute. A second area of statistical language modelling research investi-
gates more sophisticated models of context. Researchers in this area need to
estimate the probability of some event given the occurrence of some linguistic
context. This context can be as simple as the identity of the previous word
in the word stream, or it can be as complex as a binary decision tree which
allows for higher level linguistic knowledge. One specialised subset of these
models, which can be constructed quickly, is the class-based language model.
Some work in this second area began not as an attempt to instill some cogni-
tive plausibility in these models, but as a practical engineering response to the
difficulty of modelling the probabilities of rare words. Finally, most statistical
language modelling systems maintain several models of the distributions of
word probabilities. Again, this is an engineering response to the sparse data
problem. Some work has continued in designing more efficient and more
successful ways of combining these sources. Eventually, the improvements
made by statistical language modellers will filter through to the rest of the
language processing community, who should incorporate these superior prob-
ability models into their part-of-speech tagging, word classification, grammar
induction, sentence parsing and machine translation systems.

Suppose we want to estimate the probability of some wordw in a stream
of words. We can consider the stream, lengthn, as the set of results of an
experiment, repeatedn times, the outcome of each trial being partitioned into
two mutually exclusive and exhaustive event sets, ‘w occurred’ and ‘w did
not occur’. By describing a corpus as the result of such an experiment, we
have assumed that the probability of a word is independent of previous occur-
rences of other words; this is obviously false. The probabilities of words
are dependent on the previous words in the stream both syntacticallly and
pragmatically: if the previous word ishthe i then one is much less likely
to observe the wordhof i next; if happle i has occurred recently, then it
is more likely to occur again soon. However, when we make this assump-
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tion, we have a situation which can be modelled by the binomial distribu-
tion.

P (X = x) =

�
n

x

�
px(1� p)n�x (5)

wherep is the probability ‘w occurred’ andx is some particular value of the
random variableX.

The expectationE[X] can be estimated as

E[X] = np (6)

which allows us to estimatep a posteriori from the corpus. This estimate
is called the maximum likelihood since it estimates a value forp which
makes the observed results (the corpus stream) maximally likely. When-
ever the variance,np(1� p) is sufficiently large, the distribution becomes
approximately normal. This simplifying assumption has allowed researchers
to develop some robust statistical language models, but there are still many
ways to make improvements.

Dunning (1993), for example, points out that the majority of word types are
so rare that statistics which rely on normality in the underlying distributions
become less accurate. Gale et al. (1990) suggest that for a bigram language
model the sparse data problem gets worse with larger training data – that is,
V > O(

p
N), whereV is vocabulary size andN is corpus size. Sampson

(1987) makes a similar point about the variety of noun phrases in a corpus. If
this is so, then larger corpora will not solve the sparse data problem (though
they will lead to systems which perform better). With rare events, the normal
approximation tends to over-estimate the significance of the event. The degree
of error varies, depending on the rarity of the event. For example, a mutual
information estimate between the two word events (see equation 1)hthe i and
hcarburetor i involves an error which is significantly different from the
error betweenhthe i andhcar i. This is important, for example, if you want
to use these values to automatically classify words (McMahon and Smith
1996). Fisher and Riloff (1992) apply thet-test to resolve relative pronoun
attachments, using a small (500,000 words) corpus. However, they do not rely
on lexical frequencies, the majority of which are distributed so sparsely that
the normal assumption obviously does not apply; instead they use semantic
features of words (from a feature vocabulary of size 67). In this case, the
normal assumption is violated less severely. Of course, this approach relies
upon a corpus which contains words which are tagged with semantic features.

Dunning proposes using the likelihood ratio test, which is applicable in
cases where we cannot safely assume that a word is distributed normally.
First, he defines a likelihood function

H(!;K) (7)



A REVIEW OF STATISTICAL LANGUAGE PROCESSING TECHNIQUES 363

which gives the probability of observing experimental resultsK for a fixed
model (e.g binomial) of parameter set!. For the binomial case, there is
only one parameter,p, the probability of a successful outcome, and two
observations can be made for each set of experiments: the outcome occursk

times inn experiments. The likelihood ratio,� for some hypothesis which
corresponds to parameter subspace
0 is

max!2
0 H(!; k)
max!2
H(!; k)

(8)

For example, we could test a hypothesis about the strength of the collocation
between two words,A andB. The null hypothesis can be stated as:

H0 : P (AjB) = P (A) (9)

With observationsk1 and n1 corresponding to the number of timesA is
seen afterB and the number of timesB is seen, respectively, andk2 andn2

corresponding to the number of timesA is seen in the corpus and the total
total number of words in the corpus, respectively, then

� =
maxpH(p; p; k1; k2; n1; n2)

maxp1;p2 H(p1; p2; k1; k2; n1; n2)
(10)

The parameterp is maximised when it equalsk1+k2
n1+n2

,p2 is maximised when set

to k1
n1

andp2 is maximised when set tok2
n2

. Dunning reports some preliminary
success using this test to find collocations.

Badalamente et al. (1994) report that the distribution of new words in
a word stream (their corpus consisted of famous poems) can be modelled
as a Poisson process. The more time which has elapsed since the last new
word, the higher the probability that the next word will be new. They also
claim that different model parameters identify different authors. A Poisson
process, parameter� is defined by the following p.d.f. for the discrete random
variableX:

P (X = x) = e��
�x

x!
(11)

for x = 0;1; : : :. The distribution can be used as an approximation of the
binomial distribution with largen and smallp (� = np). More recently,
Church and Gale (1995) have modelled the distribution of words in texts as
mixtures of Poisson distributions.

Katz (1987) uses a formula by Good (1953) (suggested by Turing) to
improve upon the maximum likelihood estimate for rare events. If an event
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occurredr times in ann-event sequence, then the maximum likelihood esti-
mate isr=n; in the Turing-Good model, the probability of such an event is
r�=n,

r� = (r + 1)
nr+1

nr
(12)

wherenr is the number of events which occurredr times in the corpus. For
example, if the events in question are occurrences of bigrams, in a system
where the unigram model is fixed (vocabulary known), then we can estimate
a non-zero frequency for bigrams which did not occur in the corpus (r = 0)
as n1

n0
; n1 is the number of bigrams which occur once in the corpus andn0

is the number which do not occur at all (V � V �P
r>0Nr). This estimate

requires only that the event be modelled binomially. The advantage is that
no event (e.g. bigram) is assigned a zero-probability estimate); the system is
easy to implement and leads to measurably better language models.

Church and Gale (1991) describe an empirical version of the Turing-Good
estimate, called the held-out estimate, attributed to Jelinek. The Turing-Good
estimate can be considered to be the expected frequency, in a new corpus, of a
bigram which occurredr times in the original corpus. In the held-out method,
Nr is the count of all bigrams which occurr times in the first corpus andCr is
the total count of those bigrams in the second (held-out) corpus. The heldout
estimater� is calculated asCr=Nr. A version of this model is known as the
deleted estimate. Here, held-out estimates are calculated and then the two
corpus roles are reversed: the held-out corpus becomes the retained corpus,
and vice-versa. The final estimate is calculated as:

r� = (C01
r + C10

r )

(N0
r +N1

r )
(13)

whereN0
r is the number of bigrams in training corpus 0 andC01

r is the total
number of occurrences in training corpus 1. In practice, held out estimates
usually involve more than two held out parts.

One limitation with these methods is that they assign the same proba-
bility to all events which occur zero times (or once, twice, and so on).
Church and Gale suggest a way of allowing us to partition the set of bigrams
which occurr times, by using a second source of information – component
unigram frequencies. Although words clearly are not generated indepen-
dently, P (x)P (y) is still an informative source of information about the
zero-frequency bigramhxy i. These enhanced models lead to qualitatively
better results – the enhanced Turing-Good is more efficient in its use of
data than enhanced deleted estimate. However, O’Boyle et al. (1994) state
that the unenhanced deleted estimate performs better than the unenhanced
Turing-Good.
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Nicholis and Katsikas et al. (1993) present a radically different and highly
original model of linguistic structure. In their model, a chaotic map is parti-
tioned into an abstract alphabet; dynamically iterating this map produces a
text. When some collective parameters of this text are examined – Zipfian
statistics, mutual information, and Markovian profile – the results are similar
to those produced by a natural language. Chaotic maps can account for certain
basic syntactic requirements: context history, selectivity of few keywords and
polarity (i.e. sentences are not the same when read backwards). They use the
logistic map as their generator; it can be defined by the update function:

xn+1 = Cxn(1� xn) (14)

with various values of parameters,C = 3:57;3:7;4, and some base value
x0. The correlations between the artificial and natural texts (with respect to
several macroparameters) suggests a similar underlying chaotic generator.
Niyogi and Berwick (1995) warn about the dangers of making conclusions
about the language-like properties of a model given Zipf-like similarities.

The final example of work in the area of improving basic models of word
distribution is by Kuhn and DeMori (1990); they develop a cache-based
system which attempts to model the non-stationary aspects of word distri-
butions: natural language tends to be about particular subjects, at a local
level. A simple way to model this is to exploit the fact that once a word has
appeared in a text stream, the probability that it will occur at some point in
the immediate future is higher than the globala priori (unigram) probability
predicts. In their system, words are associated with parts of speech. The
probability componentP (wjg), estimating the likelihood of wordw given
classg is normally calculated globally (see equation 4); however, each part
of speech is also associated with a cache which stores then most recent
examples of words which are parts of speech of that type. Thus there are two
ways of calculatingP (wjg); these models are weighted together, leading to a
combined model which supports sensitivity to local word frequency distrib-
utions whilst maintaining a global, reliable, but less informative model. The
authors claim a threefold reduction in perplexity when the model is tested.
Work has continued on so-calleddynamiclanguage models (Lau et al. 1993;
Rao et al. 1995; Jelinek 1991). Particular attention is being paid to finding
statistical models of the rise and fall in likelihood of words throughout texts,
and to discovering how the observation of one set of words can influence the
probabilities of others.

The second strand of statistical language modelling involves the estima-
tion of better contexts. Early work in the area considered the most recentn

words (Jelinek 1976; Jelinek 1985) as context –P (wn+1jwn

1 ). Word-based
contexts then came to be seen as simple partitions of a general context�(�)
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– P (wn+1j�(�)). It became clear that there were many functions� which
partitioned the context,�. One popular and easy to implement context func-
tion mapped contexts together if and only if each of the most recentn words
corresponded to certain parts of speech –P (wn+1jgn1 ). These class-based
language models (Jelinek, 1990; Brown et al. 1992; Derouault and Merialdo
1986) improved performance (as measured by perplexity); however, whilst
the models are significant advances on purely word-based ones, their cogni-
tive plausibility is still questionable. Class-based language models usually
require previously tagged training data, with tags usually corresponding to
familiar linguistic tags (Derouault and Merialdo 1986; Kuhn and Mori 1990);
however, some systems automatically generate their own (usually context-
less) tags from raw text (Brown et al. 1992; McMahon and Smith 1996).
McMahon and Smith (1996) also describe a multi-level class-based language
model which allows the system to fall back on reliable but relatively uninfor-
mative class-based statistics where instances of a word stream are rare, but to
exploit more fine-detailed class (and word) information where it exists.

Bahl et al. (1989) suggest an even more interesting theoretical description
within which the idea of contexts can be situated. They argue that the confla-
tion of contexts into equivalence classes which only deal with the previous
n occurrences – i.e.n-gram language models – is useful but unnecessarily
restrictive. For them, the design of a context structure should allow it to
contain information about words at an arbitrary distance from the current
prediction position, provided that this information is statistically reliable.
Recent-history equivalence classes based upon word information only allow
for questions of the type: ‘was the last wordthe?’ or ‘was the second-last word
cat?’ With their context structure Bahl et al. describe the space of possible
binary decision trees and suggest methods of discovering some of the more
useful ones. They construct trees which minimise the average entropy of the
leaf distributions and construct a hybrid trigram-tree language model which
results in a perplexity 13% lower than the pure trigram model, and 9% lower
than a pure tree model.

The final area of activity within the field of statistical language modelling
involves finding efficient ways of combining language models. An influen-
tial way of combining models is by considering them to be Markov sources
(Jelinek 1976). Often, the component language models have complementary
strengths and the hybrid is constructed in such a way that maximum weight
is given at any one time to the most informative and reliable component. The
greater the degree of flexibility in distributing weights across the components,
the higher the performance. In most cases, combinations of unigram, bigram
and trigram models are weighted together. For example, the simplest interpo-
lated trigram language model contains two independent weights,�u,�b, from
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which we get the trigram weight�t = 1� (�u+�b). Given this hybrid, some
method needs to be introduced which can optimise the independent weights
and hence optimise the performance of the hybrid.

A more complicated hybrid system can be built by making the weights
depend on some other, easily calculated parameter. For example, in the esti-
mation of test-set perplexity, the frequency of the previously processed word
is readily available. Whereas in the simple hybrid system, each stage of the
processing gives a fixed weight to each of the three components, in this new
hybrid, the weights can vary throughout the test set. The problem of selecting
a set of optimal weights becomes more apparent in this case, since there are
usually hundreds of different frequency-dependent weights.

In order to use a parameter estimation technique from Markov modelling
theory (Rabiner and Juang 1986) it is useful to think of the hybrid language
model as a Markov chain with two types of arc – emitting and non-emitting.
Figure 1 shows a single transition for the simple hybrid case. The probability
of word wk following the segmenthwi; wji is equivalent to the two-stage
transition from the statehwi; wji to the statehwj ; wki, which is equal to the
sum of all ways of making that transition; that is

P (wk) = �u � P (wk) + �b � P (wkjwj) + �t � P (wkjwi; wj)

The emitting transition probabilities are estimated as usual in a maximum
likelihood way, using a training text. The non-emitting, weight probabilities
are estimated using a separate unseen text.

A re-estimation algorithm (Baum et al. 1970) can be used iteratively to
optimise a set of initial parameter values, to an arbitrary degree of significance.
The update equation for thejth weight,�j out ofL language models is as
follows:

�0
j
=

nX
i=1

�j � PLMj
(wi)P

L

k=1�k � PLMk
(wi)

(15)

where the held out corpus isn words long andPLMj
(wi) is the probability

estimate of wordwi, using thejth language model. This procedure has been
shown to lead to Markovian language models whereP t(wn

1 ) � P t+1(wn

1 )
– i.e., given that the held out text is a sufficiently representative sample of
the language being modelled, then the algorithm makes the held-out text
iteratively more likely. The held-out text should be disjoint from the test and
training sets to prevent over-learning of those texts.

With the more complicated interpolated language model – where lambda
values depend on frequencies,�0

j
(f) is calculated using an equation similar

to 15 above, except that only those wordswi are used which come after a
word whose frequency isf .
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Figure 1. Section of a Markov Chain showing the transition from the state corresponding to
word-pairwi,wj to the state corresponding to word-pairwj ,wk. The first three arcs, Lu, Lb
and Lt correspond to the non-emitting unigram, bigram and trigram transition weights�u, �b
and�t. The second set of arcs correspond to the maximum likelihood conditional probabilities
of the wordwk, for unigram, bigram and trigram language models.

Interpolating language model components requires that the training data
is fixed; new data requires the system to be re-trained. Recently, some
work has begun on finding mathematical relationships between language
model components. O’Boyle et al. (1994) have designed weighted average
language models. These models also have the advantage of being able to
exploit higher ordern-grams which occur in statistically significant numbers
in a corpus, without leading to the explosion of training parameters which
a similar extension would entail with interpolated language modelling. This
model is described as follows:

P (wkjwk�1
1 ) =

P
m

i=1�i � PML(wkjwk�1
k�i

) + �0 � PML(wk)P
m

i=0�i
(16)

where there are informationally significant segments up tom+1 words long,
andPML(wk) is the maximum likelihood probability estimate of a word. The
denominator acts as a normaliser. It has been found that

�i = 2jw
k�1
k�i

j � logf(wk�1
k�i

) (17)

where jwk�1
k�i

j is the length (in words) of the segment, results in a useful
language model. This approach might prove a more adequate platform for
implementing a multi-level class-based language model (O’Boyle et al. 1995).



A REVIEW OF STATISTICAL LANGUAGE PROCESSING TECHNIQUES 369

Even more recently,maximum entropyapproaches to combining informa-
tion sources have been developed (Lau et al. 1993). Essentially, information
sources are re-described as constraints on the expectation of a single combined
probability distribution.

2.5. Grammar induction

One linguistically well supported method of modelling language is by spec-
ifying a grammar. The quality of a particular grammar can be assessed by
measuring its performance at parsing (assigning hierarchical bracketing and
appropriate labels for constituents at all levels) some test set of sentences.
Many of the techniques which we have examined so far have been designed
precisely to avoid some of the difficulties in constructing broad coverage
traditional grammars. However, computational linguists who work on
grammar induction have also made some significant recent contributions to
natural language processing. Many have done so by extending the structure of
their grammars to include a stochastic element. This strain of computational
linguistics therefore retains many close connections with mainstream linguis-
tics and cognitive science, yet is beginning to produce robust parsers to rival
systems often (wrongly) considered to be purely statistical and grammar-free.

Before we begin our brief review, we recall five types of grammar, from
most powerful to weakest, which Chomsky considered worth discussing as
models of natural language; they are: recursively enumerable, recursive,
context sensitive, context free and finite-state. Chomsky has spent some
energy arguing against variants of finite-state grammars; however, as we
have already seen, much work on natural language modelling has already
been carried out with stochastic versions of finite state grammars (for exam-
ple, word-basedn-gram language models). This has been the case for at least
two main reasons, one pragmatic and one theoretical: firstly, we note that
stochastic finitary models are less complex than their more powerful rivals
and can be built with less effort; we also note that the adoption of such gram-
mars allows computational linguists to expliot the mathematical techniques
of equivalent systems – namely Markov models; secondly, computational
linguists may prefer finitary grammars for theoretical reasons: perhaps they
consider them more compatable to a holistic (anti-modular), empiricist (anti-
rationalist) model of cognition. The former reason is more resistant to
criticism than the latter.

Grammar induction researchers model natural language with phrase
structure grammars (context free and sensitive) or with grammars which are
equivalent to phrase structure grammars. Sincen-gram word-based models
are stochastic and finitary, researchers who build them are also inducing gram-
mars. The next most powerful grammar is the context-free grammar, which
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recently has become a popular model base onto which researchers can add
probabilistic weights.

Krotov et al. (1994) use a corpus which contains some diagrammed
sentences and some tagged sentences, from which context-free rules and asso-
ciated probabilities can be extracted. This is a significantly different approach
from one which attemps to derive a grammar from a raw corpus of words, or
even from a corpus of part-of-speech tags. Krotov et al. describe their method
as ‘grammar extraction’ and contrast it to ‘grammar training’. Since grammar
extraction attempts to induce stochastic grammars from many instances and
grammar training uses no parse instances, it is clear that grammar training
is a more difficult task than extraction. Krotov et al. found that the number
of rules extracted from the corpus and the number of words in the corpus
display a log-log root relationship. Their conclusion – that it is still not clear
if the number of rules will have a bounded upper limit – is consistent with a
finding of Sampson (1987) which he uses to argue against the grammaticality/
ungrammaticality distinction in natural language. Not only is the stochastic
grammar extracted by Krotov et al. poor in terms of coverage, but the set of
extracted rules makes heavy computational demands; this is such a problem
that, instead of attempting to deal with lack of coverage, they suggest ways
of eliminating many of the existing rules in the rule-base (for example, by
means of deleting many improbable rules, or by unifying similar rules).

Resnik (1992) argues that stochastic context-free grammars are not good
models of natural language because they are not particularly sensitive to
lexical context. Instead he suggests that probabilistic tree-adjoining gram-
mars offer a more promising framework. Tree-adjoining grammars are
generalisations of context-free grammars – the standard ‘substitution’ rule of
context-free grammars is supplemented by an ‘adjunction’ rule. Lexicalised
tree-adjoining grammars consist of tree-fragments which have a lexical item
‘anchoring’ the tree. Like Krotov et al., Resnik offers no immediately prac-
tical way to induce the grammar, though he suggests that the technique of
parameter re-estimation using the inside-outside algorithm (a generalisation
of the forward-backward algorithm) could estimate the probabilities of the
model.

Carroll and Charniak (1992) report some research aimed at learning proba-
bilistic dependency grammars using a part-of-speech tagged corpus as training
data. Given this approach, they state a preference for utility over theoretical
purity in their work. They also state an interest in modelling some diachronic
elements of language by allowing the learning mechanism to constantly adapt
to changes in language use. Adaptable grammars also have obvious prag-
matic value. In their attempt to learn grammars from artificially generated
languages, they arrange the training corpus in such a way that short sentences
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are presented to the learning algorithm before long ones. (A similar idea has
been suggested by Elman (1991).) For each sentence which cannot be parsed
by the current grammar, rules are added which allow a successful parse.
The number of new rules for any sentence is guaranteed to be finite with
dependency grammars. The next stage involves using the inside-outside algo-
rithm to estimate probabilities for these rules. The authors claim that their
incremental approach allows them to start with an empty grammar and to
evaluate a less constrained rule-space. They add that estimating initial rule
probabilities is a problem for the inside-outside algorithm because its perfor-
mance is sensitive to these initial conditions. Again, their incremental
approach may be less prone to lead to local minima grammar states – for
example, a learning experiment was carried out with training sentences being
presented in batches as opposed to in series. With random (near uniform) start-
ing probabilities for rules, 300 different experiments resulted in 300 different
grammars. Even though dependency grammars are constrained context-free
grammars, Carroll and Charniak found that they had to add more constraints
to their model to achieve grammar induction, even with artificial training
texts. The authors identify two problems with their system: first, the rules
it induces are overly specific and second, the developing grammar, as it is
taking shape, looses its capacity to overcome local minima traps. This second
feature is important because the ordering of the training corpus inevitably
introduces skews into the grammar from an early stage, from which it will
find it impossible to recover. The authors add a component to their learn-
ing system which learns from pseudo-negative evidence: at any stage, the
grammar can generate sentences and assign probabilities to them; as the
difference between the assigned probability and the observed probability
of the sentences becomes great, the rules which generated the sentence are
re-examined and possibly removed. In practice, only rules which generate
high-probability pseudo-sentences are examined, and they are removed only
if their observed probability is low.

As we have seen earlier, the preponderance of many very specific rules was
also a problem for Krotov et al. One solution which both sets of researchers
apply is to remove low probability rules by setting a rule threshold. Carroll
and Charniak also attempt to reduce the size of a grammar by trying to
eliminate low probability rules without reducing coverage. However some
sentences occur once in a corpus and require a unique parse (that is, they
require low probability but irreducible rules). Carroll and Charniak treat
these as exceptions, though Sampson (1987) offers us an argument against
this practice.

Bod (1995) describes a performance based grammar induction system
which superficially appears to be based on a stochastic context-free grammar.
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He considers the best model of the language processing ability in humans to
be based on a corpus of all the syntactic and semantic structures a typical
human experiences, together with a lexicon. The main difference between
this approach and one which uses a stochastic context-free grammar is that
Bod replaces the parsing process with a kind of analogy-construction between
input sentences and parts of the structured corpus; the goal is to reconstruct
a good structural description of the sentence by direct or indirect (through
abstraction) comparison with previously witnessed structures. Eventually, a
maximally likely ‘parse’ is selected and this new parse is added to the corpus
of linguistic experiences. The maximally likely parse is selected after exam-
ining only a sample of the possible sets of constructions, to avoid immense
computational overheads. This system shares some common features with
example-based translation (see section 2.7).

Formal language theory provides the theoretical background for grammar
induction by syntactic pattern recognition (Gonzalez and Thomason 1978)
where input vectors are considered to be well-formed expressions of some
abstract grammarGi. Naumann and Schrepp (1992) suggest one method for
inductive learning of a grammar which will parse a given corpus. They use an
incremental learning algorithm which produces a sequence of grammars, each
of which parses the corpus more successfully. New sentences from the corpus
are parsed to produce partial structural descriptions; a set of new grammars
for the corpus is created which will parse the sentences in question, and the
grammar which makes the smallest inductive leap is picked to be the new
grammar. The main disadvantage with this approach is the danger of over-
generalisation. Systems which do not use probabilities to guide selectional
preference find modelling language acquisition more difficult: in effect, all
grammatical sentences are considered equiprobable.

Some work on formal languages as models of natural language follows
from work by Gold (1967) and more recently work by Berwick (1986) on
application of the Subset Principle – a technique which, while restricting
itself to positive-only input the order of which is constrained, guesses the
narrowest possible language compatible with the data given so far. This
makes the hypothesis maximally disconfirmable.

Solomon and McGee-Wood (1993) work with categorial grammars in their
attempts to induce syntactic structure. The process is semi-automatic and uses
as its corpus a sample of childrens’ utterances. In categorial grammar, a small
number of atomic categories (usuallys for a sentence,np for a noun-phrase
andn for a noun) are postulated and all other words are defined in terms of
complex categories made up of some combination of these primitives. For
example, a word which was an intransitive verb might be described by the
functional categorys\ np, which indicates that the word in question is of
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that category of words which, when prefaced by a noun phrase, produces a
sentence. Due to the complex nature of the categories, the resulting lexicon
implicitly captures the full richness of grammatical relations. In the system,
word ambiguity is dealt with by allowing a word to have multiple categories.

Another researcher, Wolff (1991) suggests that the bootstrapping problem
can be solved through data compression techniques. Like Finch and Chater,
Wolff exploits the informational redundancy in a corpus in order to develop
a grammar which represents that corpus. He extends this idea by suggesting
that the development of language in humans is driven by the minimisation
of information storage and retrieval. He definesefficiencyin a body of infor-
mation aspower/size, where power is the expressive power of the body of
information – i.e. the non-redundant information it contains, and size is the
number of bits in the body of information. A grammar, then, which codes
for a set of utterances, can be considered to have captured the power of the
utterances, but is much smaller in size. This gives him a measure to compare
different grammars which cover a given set of utterances.

Genetic Algorithms (Holland 1975; Manderick 1992) allow learning
through a process of natural selection with respect to an optimisation task.
A population of estimates of solution hypotheses for a given problem are
compared using a fitness function. There are also mechanisms which supply
mutation or crossover, or both; these randomise parts of a hypothesis, generat-
ing new hypotheses and preventing the learning from settling into local
minima.

In classifier systems (see Holland 1986; Barry 1993) for introductions to
the theory of classifier systems), the rule of transition from instance segment
to class segment can be seen as a simple if-then rule, which is the atomic
element of a classifier system. Those if-then rules which tend to cover the test
segments in the most efficient way are rewarded; unhelpful or wasteful rules
receive less reward and tend to die out. When linked to a genetic algorithm
new grammatical sub-strategies are introduced into the fray. The system then
tends to evolve towards better approximations of the underlying grammar of
the tested language. This approach is like an evolutionary version of Wolff’s
rule-based symbolic system and Schrepp’s more formal symbolic system.

Antonisse (1991) develops a reformulation of genetic algorithms so that
they can represent any problem which can be described as a formal grammar.
He does this by re-defining the crossover operator so that the newly created
string is well-formed in some grammar. This is achieved by tagging the trailing
and leading edge of each split string with a tag which captures the relevant
string fragment’s position in the phrase structure from which it originally
came. Now, two strings can link if and only if their trailing and leading tags
can be unified. Koza (1989) has also developed work along this direction in his
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genetic programming paradigm, though Antonisse claims that his own work
subsumes Koza’s. This development in genetic algorithm theory is equivalent
to a move away fromn-gram finitary models of language (which could only
search for structure in surface strings) towards more complex (e.g. phrase
structure) grammars.

Wyard and Nightingale (1992) have designed a single layer higher order
neural net which takes as input tuples of word class units – e.g.hadj noun i
– and tries to identify those tuples which help in grammaticality decisions. The
input sentences are either grammatical or not, and the net is trained, using
a form of punishment learning, to output a simple binary grammaticality
decision. This system could be used as a pre-parse filter. Positive sentence
samples are generated from a context free grammar and negative samples are
randomly generated. The neural net was also supplied with extra information
which made sentence boundary determination trivial. This contrasts with
Elman, whose net has as input a constant stream of words with no explicit
sentence boundaries.

2.6. Modelling specific linguistic phenomena

Researchers who use training corpora which contain part-of-speech tags,
phrase structure or semantic tags can also attempt to model some specific
language phenomena: selectional restrictions, prepositional phrase attach-
ment and various kinds of disambiguation.

Resnik (1993) brings the techniques of information theory to a noun
taxonomy which has been constructed by hand in the form of a semantic net-
work. He claims that this helps in elaborating an empirically adequate theory
of selectional constraints, which he bases upon the concept of ‘preferred asso-
ciation’. Essentially, information theoretic measures provide each word with
a ‘selectional profile’, which can be compared numerically with other such
profiles with respect to particular associations.

The model he constructs seems to deal well with the traditional examples
of selectional constraint; it also shows useful properties when a class of verbs
is analysed with respect to its argument realisation properties; finally, Resnik
reports success when the system is used to syntactically disambiguate lexical
items in an unconstrained text. Resnik’s work uses the WORDNET lexicon,
which is described by Beckwith et al. (1991).

Burger and Connolly (1992) provide good examples concerning the danger
of estimating statistics of high-level – that is, non-surface – linguistic
phenomena: they construct a Bayesian Network partly by hand (designing
its overall structure) and partly from frequency information (estimating the
arc transition probabilities). They are forced to calculate corpus-derived statis-
tics of events which are the constructs of linguists – for example, ‘discourse
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focus’, a phenomenon which is unseen in a raw corpus, and which may be
constructed only upon acceptance of a particular linguistic theory.

Some researchers prefer to use hybrid statistical and syntactic models to
improve performance in disambiguation, recognition, part-of-speech tagging
(Brill and Marcus 1992; Church 1988) or generation. Rohlicek et al. (1988)
have reported success using a small corpus and a set of manually constructed
sentence templates, unto which sentences are mapped. Then, using the
reduced number of training parameters which their sentence template
system allows them, they construct a useful Markov model of language which
can automatically tag words. Basili, Pazienza and Velardi (1992) also add in
some syntactic and semantic information to improve the performance of their
system. This work extends statistical language modelling in the same direction
as Resnik. Basili et al. continue their work (Basili et al. 1993) by developing
a verb clustering algorithm which manages to identify semantically plausible
classes of verb.

Church et al. (1991) automatically parse a corpus into SVO triples. They
then use this data to estimate mutual information collocations for SV, VS,
SO, OS, VO, OV sub-pairs. The set of SV pairs identify, for example, typical
verbs for a given subject: for the subjecthboat i, common collocations
includehcapsize i, hsink i, hcruise i, hsail i andhtow i.

Liddy and Paik (1992) calculate the correlation between pairs of semantic
tags supplied by theLDOCE dictionary using the correlation coefficient
statistic. They include the information this provides into a hybrid system
which contains heuristics for combining the multiple information sources.

We can consider the process of predicting particular semantic representa-
tions from a sentence to be similar to machine translation: in both cases, we are
looking for the most likely alternative representation of a given input sentence.
Speech recognition can also be viewed as the process of finding consistent
mappings between an input representation of the sentence (acoustic) and a
phonemic or orthographic output representation. This claim about underlying
similarities is partly supported by the recent use researchers have made of
parallel texts: in testing word sense disambiguation models, some researchers
(Gale et al. 1992) have been using examples of text where the semantically
ambiguous words are variously translated into two or more distinct foreign
words, each of which broadly approximates one of the original word senses.
For particular sentences and particular semantically ambiguous words, the
translated text affords an opportunity to evaluate the sense chosen by the
disambiguation model. This testing method avoids reliance on expensive
tagged corpora or lexicons which are sufficiently large. One of the difficulties
with this method is an underlying assumption about the semantic impor-
tance of translation differences because there are three foreign words which
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approximately translate some word, it cannot be concluded that there are three
distinct senses.

2.7. Machine translation

In this section, we will give a brief overview of some recent developments in
machine translation. Machine translation is, perhaps, the most difficult of all
of the language processing specialisms. It requires the development of a robust
model of two languages (no practical model exists today even for a single
language); useful machine translation systems will also require comprehen-
sive semantic and possibly pragmatic and discourse-level models to avoid
serious problems of disambiguation. Again, no detailed semantic descrip-
tion of a language has yet been developed. However, for those interested in
constructing complete language processing systems, it offers a practical way
of evaluating these systems whilst at the same time allowing them to carry
out work on useful language applications.

Jones (1992) describes a ‘virtual translation’ system as one which creates
pairings between a source example and a target example, where examples are
represented in a structure which includes morpho-lexical, syntactic, semantic
and pragmatic elements. Such a system makes an implicit assumption that
underlying formalisms exist for each of these elements: for example, with
lexical semantics, some language independent formalism needs to be used
which can describe words from any language. Componential analysis may
provide such a formalism, though there are many technical problems in their
construction, and some criticisms of the theoretical assumptions which under-
pin them. Jones also experiments with a functional grammar system.

If fragments of text are considered as examples in Jones’ system, then it
can look for a match with some text fragment from another language by
measuring their semantic similarity. Due to the emphasis on the meaning of
text fragments (rather than, say, a detailed syntactic description), Jones argues
that his system embodies a morefunctionalview of language use than many
of the language processing systems which we have presented so far. Jones
uses versions of letter-based trigram language models, class-based models
and a simple probabilistic word boundary detection system to describe the
morphological and syntactic elements of text fragments, and implements a
version of functional grammar manually. No details are given of the quality
of the system.

Somers et al. (1994) continue work on an example-based translation system.
They need to use weightedn-grams to make better estimates of word align-
ment, because one of the languages they work with is German, which
compounds some words more than English. They also use the automatic
word classification system described by Schütze to tag words. The alignment
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of text fragments is now constrained by syntax rather than semantics as before.
Recombination of translated fragments is constrained by the equivalent of a
simplified probabilistic class-basedn-gram model. Again, no detailed evalua-
tion of the system is offered, though some translated fragments are presented.

Juola (1994) describes another variation of example-based translation. He
builds a system based on the ‘marker hypothesis’, which states that some
(small) set of lexemes or morphemes exists in all natural languages and that
these items are significant indicators of grammatical context. He embeds this
hypothesis in a context-free grammar. He deals with lexical translation by
maintaining multiple translation dictionaries, where each dictionary not only
identifies the lexical mapping, but is associated with one particular syntactic
context. Once source text fragments have been translated, the final target
structure is recombined by a permutation of the source structure. Parameters
are optimised by a simulated annealing algorithm. Results are reported from
an experiment which was based on a corpus of 30 simplified bilingual
sentences (generated by a grammar with a maximum of 10 rules and a lexicon
of no more than 31 words) and tested on 47 sentences, 10 of which corre-
sponded to novel syntactic structures. On the training data, Juola reports 36%
correct, 21% minor errors and 44% gibberish. Juola (1995) subsumes his
algorithm, which is based on the marker hypothesis, to a version of the cate-
gorial grammar (McGee-Wood 1993) formalism. He describes an experiment
which uses a bilingual corpus of sentences (no more than 7 words long) found
in a child’s reading book but reports disappionting results.

Gaussier and Lange (1992) use mutual information (see equation 1) to
discover bilingual word pairs from a bilinguial sentence-aligned corpus (from
an idea proposed by Brown et al. (1990)). Their system is less conceptually
developed compared to Jones’, though they report that 65% of word tokens
are given ‘good’ assignments in the second language. Even a system which
is so close to the data and with so bare a linguistic structure runs into sparse
data problems.

Sutcliffe et al. (1993) have also designed a lexical translation system.
Their work could be considered as an implementation of one element (lexical
semantic) of Jones’ text fragments. Sutcliffe et al. map words into points in an
n-dimensional common semantic space. The mapping is generated automati-
cally from machine readable dictionaries to produce a componential analysis
of words. The definition of a word is parsed and its associated adjectives
are added as semantic features (the word ‘furry’, for example, becomes the
semantic feature+furry ). Two distinct sets of features can be extracted
from two monolingual dictionaries and a mapping from the feature space of
one language to the feature space of another is constructed manually. This
type of approach has been described, for obvious reasons, as theinterlingua
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approach. It contrasts with the directlytransfer-based approach of, for exam-
ple Gaussier and Lange; however, the distinction may be transcended (Egedi
et al. 1994).

Also represented in the field of machine translation is the syntactic pattern
recognition approach. Oncina et al. (1994) present a learning algorithm which
induces subsequential transducers – systems which translate sentences from
one (formal) language to another, based on a finite state network which has
transition arcs with associated input and output symbols. The authors offer
results from an artificial translation task – visual descriptions of simple scenes,
expressed via a context free language – of less that 0.1% error.

There are other recent grammar-based approaches to translation. Egedi et
al. (1994) describe a translation system based on a synchronous tree-adjoining
grammar formalism. Whereas Resnik exploits lexicalisedTAGs, Egedi et al.
develop feature-basedTAGs; here the features of the node where substitution
takes place are unified with the features of the root node of the stustituting
tree. SynchronousTAGs are simply pairs of grammars with a transfer rule-
set mapping correspondences between nodes in the two grammars. If the
two grammars capture the structure of two languages, then translation may
be possible; if the two grammars capture the syntax and semantics of a
single language, then a useful language generation/understanding system
may be developed. The authors illustrate the benefits of their system by
considering some typical linguistic difficulties: retalive clause,WH-questions,
lexical selection (where they prefer selection-based constraints on unification
rather than the interlingual approach seen in Sutcliffe et al.) andNP-recovery.
Their synchronousTAG system is not stochastic.

2.8. Summary and connections with non-statistical natural language
processing

Of the language processing specialisms mentioned in this paper, some
rely more heavily on statistics and others are closer to a more familiar
rule/grammar-based approach. In the former category we have automatic
word classification, which has certainly produced robust, large-scale and
practically useful classifications. A major problem with this specialism, and
one which is shared by many statistical language processing specialisms, is
finding adequate ways of measuring how successful a classification algo-
rithm has been. This is discussed more in section 4. Another limitation of
most current classification systems is their rather unsophisticated representa-
tion structures: they do not cater for the dynamic and polysemous nature of
lexical items.

The cases of part-of-speech tagging and unsupervised segmentation show
us what statistical methods really have to offer, namely robustness of perfor-
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mance. The best of these systems achieve success percentages typically in the
90’s on unconstrained natural language input. However, we should remember
that even the simple strategy of selecting the most likely part-of-speech for
a word can claim around 90% success. So we should be careful with appar-
ently successful systems, since the more difficult (and, one assumes, more
linguistically demanding) problems reside in the remaining few percent which
the statistical system cannot deal with. Another problem is over-specificity:
the less like the training text any test text is, the poorer the performance of
part-of-speech taggers.

Statistical models of language tend to be used in cases where robustness is
preferred over cognitive plausibility, the paradigm example discipline being
speech recognition. More traditional linguistic representations of language are
prevalent in the area of grammar induction, where phrase structure grammars
are augmented by rule probabilities.

Generally, statistical and non-statistical models of language are used in
different contexts and for different purposes. In the former case, they can
almost be considered as signal filters, operating at relatively low levels,
reconstructing uncertain acoustic signals and moving towards more com-
plex linguistic functions in a piecemeal way. Non-statistical models are still
dominant in natural language understanding applications. The two paradigms
have tended to model performance and competence approaches to language,
respectively. Bod (1995) favours models which deal with language perfor-
mance over competence. He describes four limitations of the competence
approach: the problem of ambiguity proliferation, the instability of human
grammaticality judgements, the poor facility for modelling language change
and the general descriptive inadequacy of all existing rule-based grammars.
This last problem has a tendency to become more limiting the larger a linguis-
tically designed grammar gets – as the size of the rule and feature sets grows,
the greater the likelihood of inappropriate interactions between them. This
insight is analogous to one made by critics of traditional Artificial Intelligence
methodologies (Holland 1975; Brooks 1991). Gorin et al. (1991) model the
relationship between linguistic behaviour and situated meaning by mapping
language input to machine output, in a restricted domain. This approach
shares some similarities with transfer-based approaches to machine trans-
lation (see 2.7). The competence grammar of language users relates to the
general structural capacities of that language, but by itself, it tells us nothing
much about the details of how communities of language users have certain
linguistic expectations and preferences and how these are used, practically,
in disambiguating possibly confusing messages. Yet these are precisely the
sorts of question which interest speech and language technologists.
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Bod predicts that the most useful language processing systems will be
hybrids of the statistical and formal approaches. Resnik (1993), Derouault
and Merialdo (1986) and Solomon (1993) also notice a coming together
of information-theoretic and traditional linguistic approaches to language.
Resnik’s system uses a database of words which have been tagged using a
semantic network structure. This database is input to a taxonomy-generating
system whose principles are based on information theory. He suggests that this
synthetic approach models language generation and understanding better than
traditional linguistic approaches. He puts less emphasis on the debate about
language acquisition and avoids using raw corpora. He re-states the familiar
claims that lexically based statistics can only generate limited models of
language competence.

The question of how the lexicon is represented is important for many natural
language processing researchers; statistical approaches show us how we can
operate with very large vocabularies and still discover some structure in raw
text (automatic word classification); they can also offer us existence cases of
semantic priming (dynamic and ‘trigger-based’ language models). Questions
of grammatical structure are also central regardless of the particular natural
language processing approach. Statistical models can help us avoid explosions
of ambiguity by recognising that not every parse or tag or grammar rule is
equiprobable; they offer us existence cases of grammar induction on large
scales; and they give us an idea of just how much structure can be extracted
from raw textwithoutthe use of traditional grammars.

3. Commonalities between language processing systems

Some of the statistical approaches described in this paper share common
features; they are also related to structure-discovering processes in other
areas of cognitive science simulation, most apparently in some early research
on visual processing. The underlying principles which unite this research
come from information theory and statistics.

In the short period after Shannon’s description of an information theoretic
approach to language processing (1951) and before Chomsky’s influential
criticism of finite models of language (1957) psychologists investigated some
of the powers and weaknesses of the distributional approach (Miller 1951).
This work was partly abandoned, though some work has continued (Miller
and Charles 1991). Contemporaneously, psychologists were also investigating
the significance of an information-theoretic approach to the visual system; an
early discussion of informational visual processing can be found in Attneave
(1954). There has been no comparable rejection of information theory from
cognitive models of visual processing.
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In his article, Attneave spends some energy convincing the reader that the
same principles of information theory are being used in language processing;
he suggests that visual information is concentrated along contours, which
fits well with the idea of entropy as a measure of uncertainty; Nicholis and
Katsikas (1993) notice this phenomenon and offer it as evidence that a chaotic
model might underly the perceptual and linguistic processes. The idea of iden-
tifying points of informational interest has some parallels with the recent idea
of a ‘distituent’ associated with the point of minimum mutual information,
described well in Brill et al. (1990); this idea is also supported by the pattern
of prediction error rates in recurrent neural networks (Elman 1990). Attneave
also links the psychological idea ofgestaltwith the information theoretic
concept of high redundancy. In linguistics, this corresponds to utterances such
as:hthe cat sat the mat i; the preposition is inferred by the hearer in
order to construct a meaningful sentence. Next, he states how these principles
lead to a questioning of the connection between perception and inductive
reasoning: that is, the boundary between perceptual information gathering
and the central processing which the brain is supposed to perform. A con-
vincing assault on the nature of this boundary has recently been presented
by Dennett (1991). Attneave’s main contribution in this article was to give
some heuristic methods for reducing redundancy in an informational field.
Many of these ideas can be subsumed by Algorithmic Complexity Theory
(Kolmogorov 1964). Attneave also claims that something similar happens
when good science is in operation.1

Some connectionist researchers have described the functioning of their
neural systems in terms ofinformation maximisation, under certain con-
straints. Linsker (1988) describes a multilayered neural net which uses
Hebbian learning to self-organise feature-analysing cells. He states that the
organising principle behind the changes in connection strength involves
maximising the amount of information preserved in the signal as it moves
through the layers. This is equivalent, given certain constraints, to maximis-
ing the statistical variance of each layer’s output activity. Linsker not only
shows that there is a relation between Hebbian and Hopfield networks and
information theory, he also demonstrates the mathematical link between these
connectionist learning rules and statistical variance. Cheng and Titterington
(1994) and Chater (1994) offer some more detailed descriptions of the rela-
tionship between neural networks, probability theory and statistics.

The work of Finch and Chater, we recall, uses Spearman’s rank correlation
coefficient,�, which can be shown to be equivalent to

1“The abstraction of simple homogeneities from a visual field does not appear to be different,
in its formal aspects, from the induction of a highly general scientific law from a mass of
experimental data” (Attneave (1954), p. 187).
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the correlation coefficient between two variablesX and Y , which is the
covariance of their standard forms. The closer this statistic is to 1, the stronger
the correlation between the two sets of variables. Linsker has shown how
covariance maximisation is related to information maximisation in a neural
net; a related conclusion is that variable distributions which maximise the
Spearman’s rank correlation coefficient also maximise information.

These statistical and neural approaches suggest an underlying connection
between both. Also, the ‘replacement test’ involves ideas which are obvi-
ously similar to the more general approach of estimating mutual information
statistics, and to the ‘variety index’ of Faulk and Gustavson (1990); it is also
similar to Brill et al.’s distributional analyses and Schütze’s hybrid neural net
and statistical clustering approach.

Similar links between neural network performance and information
processing are found in Plumbley (1993) and Atick and Redlick (1990),
where the goal is described as minimisation of redundancy, corresponding
to a minimisation of output channel capacity. A connection between infor-
mation theory and artificial neuronal architectures is made by Gorin et al.
(1991), who construct a network the weights of which are defined by mutual
information.

Pereira and Tishby (1992) cluster words using the Kullback-Leibler
distance, or relative entropy. They use it to minimise the information loss in
using a class distribution rather than the actual word distribution; mutual infor-
mation is defined (Cover and Thomas 1991) as the relative entropy between
the joint distribution,P (X;Y ) and the product distributionP (X)P (Y );
that is

M(X;Y ) = D(P (X;Y ) jj P (X)P (Y ))

whereD(p1 jj p2) is the relative entropy between probability distributionsp1

andp2; relative entropy as a measure of the distance between two distributions
is closely related to covariance and the correlation coefficient.

In Kneser et al.’s system, we recall that they attempt to minimise the
negative log-probability, LP of the bigram class language model, which can
be shown to be equivalent to:

�
X
g1;g2

N(g1; g2) logN(g1; g2) + 2
X
g

N(g) logN(g)�
X
w

N(w) logN(w)

We can see by inspection that, if these countsN(g)were probabilities, then the
above equation is merely a sum of three different types of entropy and we see
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that finding an optimal negative log-likelihood is equivalent to maximising
the average class mutual information (sinceH(W ) will not be influenced by
word re-classifications).

Burger and Connolly (1992) construct a Bayesian Network in the form of a
tree and use sum squared error minimisation to calculate parameters for their
system, which attempts to resolve anaphoric reference. This system is similar
to Bahl et al., who use entropy minimisation to build a decision tree for
language modelling. Burger and Connolly derive their measure from the
gradient descent of back-propagating neural networks, while Bahl et al. con-
struct their language model equivalence classes by minimising the average
entropy of leaf distributions – that is, they attempt to discover the maxi-
mally informative binary question at a tree-node. Their system can subsume
word-based and class-based language models; it can also allow syntactic
features to be included as context, just as probabilistic lexicalised tree-
adjoining grammars can. Bahl et al.’s system can also include (in theory)
semantic and pragmatic features of word context, as can Bod’s data-oriented
parsing scheme. Both these systems share some structural similarities with
representations in example-based translation (Nagao 1984; Jones 1992).

Fisher and Riloff (1992) use thet-statistic (based on the Student’st-
distribution) as a measure of co-occurrence likelihood between two items.
It too is calculated from corpus frequency information and can indicate
strong correlations between items. This statistic can measure collocational
differences, whereas mutual information measures collocational similarities
(Church et al. 1991). The likelihood ratio test allows measures of colloca-
tional similarity without assuming a normal distribution. Grefenstette (1992)
suggests that an adaptation of the Jaccard distance similarity measure leads
to interesting language collocations – for example, his measure can be used
to discover some interesting antonyms. The Jaccard measure is similar to
Brill et al.’s distributional statistic; the measure is calculated as the fraction
of shared features between two objects divided by the total number of their
attributes. Ney, Essen and Kneser (1994) include examples of word classifi-
cation systems which, while not hierarchically clustered, use an optimisation
technique based on decision-directed learning; their optimisation measure
here is training set perplexity.

Statistical language processing techniques must deal with the phenomenon
of sparse data; fromn-gram language modelling to grammar induction, the
poverty of available data has meant that the performance curves of many
systems have flattened whenever they have been scaled up (to more complex
grammars, or to larger vocabularies). This problem, however, is perennial in
the field of artificial intelligence.



384 JOHN MCMAHON AND F. JACK SMITH

4. Evaluations of language processing techniques

As an approximate rule of thumb, researchers who construct connectionist
architectures tend to belong to the cognitive scientific school of corpus linguis-
tics; those who use explicitly information theoretic measures tend to approach
the subject from an engineering perspective. This division of approaches leads
to some important differences when we examine how the various language
processing systems are evaluated. Cognitive scientists look to psychology
and linguistics for evaluation measures and engineers rely on measurable
performance enhancement in particular applications (e.g. speech recognition
and machine translation) for evaluation.

It should be clear from section 2.1 that, though many of the methods may
appear to use different approaches, there is a unifying concept into which
most of the successful word classification systems can be transformed. This
concept involves the quantification of the difference between two distributions
– in this case, two distributions of word classes. Many successful word
classification systems, to date, have worked by making operational definitions
of the principles of structural linguistics. It remains to be seen, however, if
these early successes can be improved sufficiently to make the structuralist
approach any less unappealing to the mainstream of the linguistic community.

That these systems perform differently suggests that some measures are
more appropriate than others; this highlights the need for discriminating
system evaluation and also suggests a useful line of research in mathematical
approaches to language: why are some models better performers? What does
this suggest about building better mathematical theories of language? The
power of the bigram statistic is anomalous and perhaps even surprising from a
traditional theoretical linguistic point of view. Church et al. (1991) have made
a start on investigating the differences between various statistics which are
commonly used in computational linguistics and lexicography. They explain
the difference in lexical use between thet-test, from traditional statistics, and
mutual information, from information theory. With mutual information, they
claim, it is difficult to test for subtle dissimilarities between the use of two
closely related words.

There are fewer theoretical difficulties with engineering evaluations, but
many practical ones. This tends to make the reporting of results for partic-
ular systems less contraversial. Some practical disputes in evaluating systems
include: assigning credit to almost-right translations and partial parses; eval-
uating the quality of the classification which results from an automatic word
classification system; the proper treatment of unknown words in calculating
the perplexity of unseen test sets.

On the other hand, not only must cognitive scientific researchers construct
models which (measurably) work, but they must show that the systems work
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in a similar way to the human language processing system, or at least that
the constructed model offers some other insight on human language process-
ing. Unfortunately, there is still some dispute in psychology and linguistics
over the plausibility of various models of language processing: for example,
the nature of the lexicon, the particular form of the (universal) grammar of
languages, the relative autonomy of language processing sub-components
and the nature of semantic and pragmatic processing all remain hotly debated
issues.

Finally, we illustrate some difficulties faced by cognitive science
researchers when they come to make conclusions about their systems; we
take automatic word classification (and the corresponding cognitive scien-
tific area – lexical classification in children) as an example. Children acquire
language skills which include the ability to differentiate between types of
word: happle i is closer tohpear i than it is tohhappy i or hsits i, for
example. Some word-classification systems can also (crudely) approximate
this skill. Without any more information than this, we cannot bring the success
of our word classification systems to bear on this cognitive scientific discus-
sion. What extra information could we add to make our computational model
cognitively relevant?

It is sometimes implicitly assumed that the ability to process natural
language is so difficult that any extant demonstration of this ability must
provide clues abouthuman language processing. This stance is rarely
supported by argument; it most certainly does not hold, for example, with
regard to the two ways that birds and planes fly. Let us imagine, for the
moment, a classification system which performs ideally: it fully classifies
words, in all of their polysemic variety. However, children still might acquire
their skill in an entirely different way. That both systems arrive at the same
set of skills, of course, suggests similarities at a higher level of generality, in
the same way that cows and lions, at a high level of abstraction, gather and
process food in similar ways, and that computer implementations of a con-
text sensitive grammar and a context free grammar are similar (both are also
finite-state grammars, by virtue of having been implemented on a computer).

If we assume a strong computational model of mind then a Turing machine
exists which, given the same input as a child, can develop the same linguistic
skills as a child. There may also be a Turing machine which can perform
just as well but with a smaller algorithmic complexity; indeed there may be
such a machine with the smallest algorithmic complexity possible, given the
input data. It is unclear how the complexity of the algorithm underlying the
human achievement of this skill (innateness plus acquisition) compares to
the minimum. Also, there may be other more powerful algorithms which can
extract the same set of skills from a less rich input; and some weaker ones
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which require a more complex input to reach the same standard. In this area,
the artificial intelligence approach can only deliver approximations to these
algorithms; we need psycholinguistic experimentation to discover which are
cognitively plausible.
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Scḧutze, Hinrich (1993). Part-of-Speech Induction from Scratch. InProceedings of the Asso-
ciation for Computational Linguistics31, 251–258.

Shannon, C. E. (1951). Prediction and Entropy of Printed English.Bell System Technical
Journal.

Solomon, D. & McGee-Wood, M. (December 1993). Unified Lexicon and Grammar. In
Collingham, Russell J. (ed.)Workshop on the Unified Lexicon.

Somers, H., McLean, I. & Jones, D. (1994). Experiments in Multilingual Example-Based
Generation. In Monaghan, A. I. C. (ed.)Third Conference on the Cognitive Science of
Natural Language Processing. Dublin City University.

Sutcliffe, Richard F. E., McElligott, Annette & O’Ńeill, G. (1993). Irish-English Lexical
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